Enhancement of phenolics, resveratrol and antioxidant activity by nitrogen enrichment in cell suspension culture of Vitis vinifera.

نویسندگان

  • Napaporn Sae-Lee
  • Orapin Kerdchoechuen
  • Natta Laohakunjit
چکیده

Ammonium nitrate (NH4NO3), an important nitrogen source (34% N), has been used as an elicitor to stimulate plant growth and development as well as induce secondary metabolites under controlled conditions. In the present paper, we investigated the enhancement of cell biomass, total phenolics, resveratrol levels, and antioxidant activity of Vitis vinifera cv. Pok Dum by nitrogen enrichment (MS medium supplemented with NH4NO3 at 0, 500, 1,000, 5,000 and 10,000 mg/L). The highest accumulations of biomass, phenolics and resveratrol contents were observed at 8.8-fold (86.6 g DW/L), 15.9-fold (71.91 mg GAE/g DW) and 5.6-fold (277.89 µg/g DW) by the 14th day, in the medium supplemented with 500 mg/L NH4NO3. Moreover, the antioxidant activities of cultured grape cells estimated by the DPPH· and ABTS·+ assay were positively correlated with phenolics and resveratrol, and the maximum activity was also observed in cultured cells with 500 mg/L NH4NO3 at 176.11 and 267.79 mmol TE/100 g DW, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Treatment strategies for high resveratrol induction in Vitis vinifera L. cell suspension culture

Bioprocesses capable of producing large scales of resveratrol at nutraceutical grade are in demand. This study herein investigated treatment strategies to induce the production of resveratrol in Vitis vinifera L. cell suspension cultures. Among seven investigated elicitors, jasmonic acid (JA), salicylic acid, β-glucan (GLU), and chitosan enhanced the production of intracellular resveratrol many...

متن کامل

Effect of Potassium and Iron on Berries Resveratrol and Viniferin Accumulation and Antioxidant Capacity of ‘Bidaneh Sefid’ Grape (Vitis vinifera L.) Cultivar

Nutrition management in growth season has a main effect on production and accumulation of secondary metabolites in grapevine berries. In this research the effects of foliar application of potassium sulfate (K; 0, 1.5, and 3%) and iron chelate (Fe; 0, 0.5, and 1%) on accumulation of resveratrol and viniferin and antioxidant capacity of ‘Bidaneh Sefid’ grape berries was evaluated. This study was ...

متن کامل

پاسخ سیستم آنتی‌اکسیدانی انگور (Vitis vinifera L.) به شوری

Salinity is one of the important environmental factors that limit plant growth and product. Grapes are classified as salt sensitive plants. This paper attempts to evaluate the salinity effects on membrane lipid peroxidation, antioxidant components and antioxidative enzymes activity in four grape genotypes (Vitis vinifera L., Gharashani, LaaleBidaneh, Sachagh and Shahroodi) that commonly grow in...

متن کامل

Jasmonates elicit different sets of stilbenes in Vitis vinifera cv. Negramaro cell cultures

The plant phenol trans-resveratrol, which is mainly found in grape, displays a wide range of biological effects. A cell suspension culture was developed from calli of grape leaves of Vitis vinifera cv. Negramaro in order to study the bioproduction of resveratrol. The effects of a number of secondary plant metabolism elicitors, namely chitosan, methyl jasmonate, jasmonic acid, coronatine, and 12...

متن کامل

Enhanced extracellular production of trans-resveratrol in Vitis vinifera suspension cultured cells by using cyclodextrins and coronatine.

In the present work the effect of cyclodextrin and coronatine on both trans-resveratrol production and the expression of stilbene biosynthetic genes in Vitis vinifera L. cv Monastrell suspension cultured cells were evaluated. The results showed the maximum level of trans-resveratrol produced by cells and secreted to the culture medium with 50 mM cyclodextrins and 1 μM coronatine. Since the leve...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecules

دوره 19 6  شماره 

صفحات  -

تاریخ انتشار 2014